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Abstract. A novel architecture for a self-organising agent
controller is presented here. It consists of a network of self-
organising systems that can interact with one another. Each
node in the network is implemented as a dynamical system
with a state coordinate that traverses a dynamic energy land-
scape formed from attractors whose strength and position
change over time. Connections exist between attractors of dif-
ferent landscapes allowing the dynamical systems to perturb
one another as they settle into a stable state. The agent con-
troller is given cost and reward actions that, if successfully
used, change the strength of subsequent input signals. The
controller is also given a set of enabler actions that must be
used for specific cost and reward actions to have an effect in
the next turn. The cost and reward actions have no effect if
the specific enabler action they rely upon is not used in the
previous turn. The enabler actions that the cost and reward
actions rely upon changes randomly over time.

1 DMotivation

The brain can be understood as a self-organising system, [15]
[25]. The way that a brain functions internally is not directly
determined by an external controller. Instead the brain re-
acts to sensory signals. It is an open system that senses the
environment and acts within it, thereby changing it.

Living organisms are made up of cells and their evolution
has been shaped accordingly. These systems are radically dif-
ferent to the computer architectures that are used for pro-
cessing biologically inspired models such as artificial neural
networks.

The motivation for the work presented here was to find an
abstract model that was more suitable for processing on a
computer, whether because it is more efficient or because it is
easier to understand and reason about. The aim was to pro-
vide an abstraction of the underlying computation or process
inherent in many self-organising systems rather than to claim
biological plausibility. By modelling our understanding of how
self-organising systems function we can verify and clarify our
assumptions about how real-world systems function.

The idea of using a single dynamical system for autonomous
agents and embedded cognition is not new [8]. But no self-
organising system is completely self-contained. Every self-
organising system, and also every directed system, is ulti-
mately one of many parts of a larger self-organising system.
The theory of autopoiesis [19] holds that there is no real
boundary between an agent and its environment because the
agent is a part of its environment. Beer describes how the

nervous system of an agent, its body and the environment it
inhabits can be considered coupled dynamical systems [2] [3].

Olds and Milner were able to influence the actions of a rat in
a skinner box by injecting a current into its pleasure centres
[12]. It could be argued that the rat’s brain was no longer
self-organising, but the rat, scientists, lever and apparatus
injecting the current together formed a self-organising system.
We are all part of a society, world, solar system and galaxy
that is each self-organising because they all act in accordance
with the laws of thermodynamics [5] [6] [7] [13].

Even though a self-organising system can be made up of
constituent components which are themselves self-organising,
each component can still be considered a distinct entity, for
example, an economy is formed from a network of buyers and
sellers. What then is the nature of the connections between
self-organising systems?

Real-world open self-organising systems settle into stable
states by minimising the input of free energy. Energy leaves
the system in a higher entropic state than when it entered
[11] [23]. Energy flows can take many different forms. For
example money can be considered a currency of free energy
in an economy because it enables work to be performed and
can be converted to other forms of real-world energy. The
term free energy is used here in its broadest sense to refer to
any energy that can perform work because of the presence of
a thermodynamic gradient.

If each system is ultimately part of a larger self-organising
system, then conversely, it is possible to reduce some self-
organising systems into networks of smaller systems that are
connected by energy flows. For example, distinct regions in
the brain interact with each other via connections from pyra-
midal neurons. A biologically plausible model of a neuron re-
ceives inputs of energy which leak away over time, but are
expelled as action potentials if it reaches a voltage threshold
[26] [17]. Dendritic self-organisation can be explained as the
minimisation of free energy [16].

We can consider a pyramidal projection from one area of
the brain to another to be persistent whereas the synaptic
connections between cells in a neuronal network as transient.
This is because the latter connections strengthen and weaken
over time due to synaptic drift and weight change. There is
effectively little difference between two neurons which are not
connected and two joined by a synapse that is unlikely to
release a neurotransmitter. A self-organising system contain-
ing persistent connections might be better modelled using a
network of smaller systems containing only transient connec-
tions. This could be a modelled as a network of dynamical



systems that would then both perturb and be perturbed by
other systems that they are connected to.

The connections between dynamical systems in a network
would act as energy flows between self-organising systems.
Light and heat from the sun to the earth, photons reaching
the eyes or signals being carried along pyramidal projections
from one area to another, or connections between interneurons
within the same circuit, are all examples of self-organising
systems that perturb each other via the flow of energy.

2 Model

The architecture presented here consists of a network whereby
each node is an individual self-organising system modelled by
a dynamical system. These systems attempt to settle inter-
nally into stable states, but by doing so can disturb other sys-
tems external to themselves via connections, which are also
attempting to settle into stable states.

The network of dynamical systems is used here as an agent
controller. One system is designated the output node and de-
termines which actions are to be performed. Sensory stimuli
can be injected into any system as a collection of real values.

2.1 Methodology

A useful working definition of intelligence is the ability to
adapt to an unknown environment. If the environment is fully
known in advance then an agent can perform equally well, or
better, by merely following hard coded rules. It is difficult to
argue that such an agent is acting intelligently.

Self organising systems are made up of many components
that can be arranged in a myriad of different ways. How they
self-organise in practice is determined by the flow of free en-
ergy that its environment provides.

Therefore an intelligent self-organising agent must be able
to adapt to an unknown function external to itself. This func-
tion can be an external environment for an embodied agent,
or a particular task that a system is applied to. It cannot
be assumed a-priori how an intelligent self-organising agent
can most effectively adapt because it is in effect performing a
search of which of its internal states is the most stable given a
particular input. For the same reason it cannot be assumed in
advance which components or mechanisms will be required for
a self-organising intelligent agent to most successfully adapt
to an unknown task or environment.

148 different versions of the code were tested for how well
they performed a variety of different experiments. The code
was evolved each time for different experiments and stopped
once an initial idea was obtained as to how well it performed.
In this way different algorithms or choice of functions could be
compared. If they did not show a general increase in perfor-
mance then they were discarded. Each evolutionary run could
take a day or longer to provide an initial idea of fitness, and
many weeks to fully complete.

The system was designed so that each dynamical system
could settle into a stable state, but by doing so could dis-
turb other systems with the network of systems either even-
tually finding a compromise, or oscillating between stable
states. Consideration was given as to how a system might
need to adapt by modulating its own properties. Algorithms
and functions that required fewer parameters to be optimised

were preferred because it meant that evolutionary runs would
be shorter. Algorithms also needed to be consistent with the
overall concept to make it easier to understand how the model
was adapting. One of the motivations for discarding biologi-
cal plausibility was to make an adaptive system more easily
understood, reasoned about and engineered. If a bug in the
code meant that it was not functioning as intended, then it
was corrected even if this led to a decrease in fitness. This
was because it could have been compensating for other bugs
elsewhere in the code. It is expected that there will be ways
in which the model can be further optimised and extended to
be applied to other tasks. It is also possible that ideas that
were previously discarded may find a use when the model is
applied to other tasks.

2.2 Energy landscape

Each dynamical system is effectively an energy landscape [11]
[10, pp21]. Kauffman uses the landscape concept to describe
dynamical systems as consisting of attractors, disjoint from
each other in state space, acting as lakes with drainage basins
[14, pp 176].

Using an analogy of a ball rolling along a peak, ridge or
plateau, given sufficient energy it will roll down a slope and
minimise its own potential energy. The ball will not be able
to later return unless its kinetic energy is first increased. This
process will continue until the ball comes to a stop at the
bottom of the landscape, or within a local depression that
requires more kinetic energy than the ball currently has for
it to escape. Valleys correspond to attractors in a dynamical
system, the speed that the system moves into them being
determined by the steepness of the slope.

The space in which the energy landscape resides is imple-
mented as a continuous toroidal space of three dimensions.
Any location within it can be pin-pointed using a coordinate
where each dimension is within the range [0 : 1]. Attractors
are placed randomly within the space to form the energy land-
scape. The state of the system is specified using a state coordi-
nate which has a velocity. Attractors influence the trajectory
of the state coordinate within the space by pulling it towards
themselves. Each cycle, the dynamical systems process input
signals, update the position of their state coordinate, send
output signals and then update their internal state.

Calculations involving two coordinates within the toroidal
space always use the shortest Euclidean distance possible.
This is achieved by comparing the absolute difference of each
dimension between one coordinate and the other. If the ab-
solute difference is greater than 0.5 then —/ 4 1 is added to
reduce it.

Each attractor has a strength value and this affects how
strongly it can pull the state coordinate. The strength param-
eter changes over time and can also become negative whereby
the attractor will act as a repulsor pushing the state coor-
dinate away. Attractor strength is constrained to be in the
range [—1:1].

Attractor strength decays over time. It can either be in-
creased by input signals arriving via connections or directly
injected in. Directly injected signals modify attractor strength
before those from input connections. Signals directly injected
I are multiplied by an evolved scaling parameter and ap-
plied to attractor strength Ag, either by Ag = I, Ag + I



or (As + I)/2, the choice of which is evolved.

2.3 Connections

Attractors can send signals out over connections. Connec-
tions can be either excitatory or inhibitory. Inhibitory con-
nections invert their signals to be negative. Connections are
not weighted. Each output connection originates from a source
attractor.

Signal strength is determined by distance of the state coor-
dinate to the centre of the source attractor. The stronger the
attractor, the more it can attract the state coordinate and
the stronger its output signal. Signal strength is calculated as
1.0 — normalise(m), where m is the Euclidean distance be-
tween the position of the attractor Ap and the position of the
state coordinate eSp, normalised to be in the range [0 : 1].
oSp has a shorter Euclidean distance to Ap than Sp using
the method described above.

There are various types of connections between dynamical
systems with each type having a different effect. Some types
modify a property of a specific attractor in the target sys-
tem; strength (StrengthSignal, CopyStrengthSignal) and re-
ceptivity to input (ReceptivitySignal). Other connection types
change the properties of the entire target system; acceleration
of the state coordinate (GainSignal), the rate at which at-
tractors move (AttractorMovementSignal) and whether con-
nections should change the attractors they connect to (Con-
nectionLearningSignal) and whether the output signals of the
target system should be inhibited (OQutputInhibitionSignal).
The average signal strength is calculated for each connection
type.

There are three forms of connectivity between source and
target dynamical systems. One to one connectivity between
each corresponding attractor, full connectivity from each
source attractor to each target attractor, and sparse connec-
tivity which is like full connectivity but with an evolved prob-
ability of a connection being created.

2.4 Updating state

The position of the state coordinate is then updated. The
direction to move the state coordinate is the unit vector § =
normalise(e Ap — Sp).

The unit vector is then scaled up to account for strength
of attraction and how close the state coordinate is to the
attractor. If the inverse square law were to be used to emulate
the effect of gravity then it would produce numbers within the
range [1 : 0o], whereas what is required are numbers [0 : 1]. So
instead attraction of the state coordinate is calculated as S, =
5-(1—n)?- Ag, where Ag is attractor strength multiplied by
an evolved scaling parameter and n is the Euclidean distance
between e Ap and Sp normalised to be in the range [0 : 1].

An evolved decay rate is multiplied by n and applied to
the strength of each attractor to act as a form of habituation.
The closer the attractor is to the state coordinate the faster
its strength decays.

The attraction of the state coordinate to each attractor is
added to the state coordinate’s velocity as normalise(d Sa)-
C's, where the sum of attraction is normalised to be a unit
vector and C5 is an evolved constant acceleration for the state
coordinate. If this results in values outside the range [—1 : 1],

then the velocity is constrained by normalising it so that the
largest dimension has an absolute value of 1.

The new velocity is then multiplied by a gain modifier set
to the mean of input signals of type GainSignal if any are
present. The velocity is added to the state coordinate before
being multiplied by a genetically determined decay rate. The
new state coordinate is wrapped to keep it within the toroidal
space.

2.4.1 Sending outputs

Dynamical systems then send signals over their output con-
nections to be processed in the next cycle. If the output con-
nection is of type CopyStrength then the strength of the source
attractor is used instead without relation to its distance from
the state coordinate. This is added to the strength of the tar-
get attractor as if the connection was of type StrengthSignal.

Dynamical systems can inhibit the output signals of other
systems if they connect using OutputinhibitionSignal connec-
tions. After the output force of an attractor is calculated, it
is multiplied by the output force inhibition modifier. At the
beginning of each cycle the modifier is set to 1 and ordinarily
has no effect. Unlike the other connection types which calcu-
late the average signal strength, OutputinhibitionSignal con-
nections add their excitatory or inhibitory signal strengths to
this modifier before the modifier is thresholded to be within
the range [0 : 1].

2.4.2 Updating connections

Once the input and output signals are processed, the inter-
nal state of each dynamical system is updated. Even though
connections are not weighted, there is a pressure on them to
change which attractors they connect to and from. Connec-
tions that update a property of the dynamical system cannot
adapt in this way. The strength of the signal they send is com-
pared with the strength of the target attractor, 0.5 or above
is strong, below is weak.

e [f both the target attractor and connection signal are strong
then the pressure is reduced.

e If one strength is strong and the other weak then the pres-
sure is increased.

e If both strengths are weak then no change is made.

The change to the connection-change pressure is ran-
domised with a number drawn from [0 : evolvedmazimum].
If the connection is inhibitory then the change is inverted. For
the purpose of updating connections,* when retrieving a sig-
nal strength from a connection the value returned is either 1
or 0 depending on whether the it is above or below an evolved
threshold.

The connection pressure is multiplied by the connection
learning modifier. This modifier is set to the mean of input
signals of type ConnectionLearningModifer if any are present,
otherwise it defaults to 1. If a random number drawn in the
range [0 : pressure] is greater than the evolved threshold
then the pressure is reset and the connection connects to or
from another attractor depending on whether it is an input or
output connection. The new attractor to connect to is chosen
at random.



2.4.3 Updating attractor position

Each attractor is pulled towards other attractors, or pushed
away from attractors that have flipped to become repulsors.
The total attraction and repulsion is summed up for each
attractor before their positions are updated. Each attrac-
tor’s position P; is pulled towards or pushed away by ev-
ery other attractor P;. This is calculated to be a unit vector
a = normalise(d_ ((oP; — P;)(R; + R; — 1)))

R is the output force recorder function of an attractor. This
decays alongside attractor strength using an evolved decay
rate. When calculating the attractor output force when send-
ing a signal over a connection, if it is greater than an thresh-
old then an increase is added to the recorder function. Both
threshold and increase are evolved.

The unit vector is added to the attractor’s velocity as a-C,
where C, is an evolved constant acceleration. If this results in
values outside the range [—1 : 1], then the new velocity is nor-
malised so that the largest dimension has an absolute value of
1. The velocity is then multiplied by an attractor movement
modifier. This modifier is set to the mean of input signals of
type AttractorMovementSignal if any are present, otherwise
it defaults to 1. The velocity is added to the attractor’s co-
ordinate before being multiplied by a genetically determined
decay rate. The coordinate is wrapped to keep it within the
toroidal space.

Attractor strength is used when calculating attraction of
the state coordinate, the output force recorder function is
used when calculating attraction of other attractors.

2.4.4 Scaling

The range of values used for describing distance, attractor-
and signal strength were chosen to be in the range [0 : 1] for
practical reasons. There is nothing inherent in the model that
makes these ranges relevant to one another. Therefore scale
parameters are evolved so they can be applied to one an-
other. A pair of scale parameters are evolved together, a base
[0 : 2] raised to the power of an exponent. When calculating
attraction of an attractor on a state coordinate, the attrac-
tor strength is scaled before being applied to the unit vector.
Directly injected inputs are also scaled before modifying or
setting attractor strength. Connections which modify global
parameters of whole dynamical systems (GainSignal, Attrac-
torMovementSignal, ConnectionLearningSignal, Outputinhi-
bitionSignal) have the signal they deliver scaled by a single
real parameter in the range [0 : 2]. Connections between at-
tractors (StrengthSignal, CopyStrengthSignal, ReceptivitySig-
nal) are also scaled by another parameter in the range [0 : 2].

2.4.5 Pruning

The network needs to be pruned before first use. Pruning
makes the network more efficient and easier to visualise. All
systems with output connections that ultimately connect to
the output system are marked as active. Inactive systems are
then removed from the network along with their input and
output connections.

Depending on how it has evolved, some dynamical systems
will not receive any sensory signals either by direct injection
or via input connections from other systems. These systems

may be active and have output connections that affect the
average input signal in other systems. It was found that prun-
ing these systems reduced performance but also allowed the
agent controller to differentiate more effectively between sub-
optimal actions. Only the inactive systems were pruned when
obtaining the results in section 4.

2.5 Parameter Optimisation

The parameters of the networks are optimised using an evolu-
tionary algorithm. Once these evolutionary runs are finished
the parameters are used to generate and test a population of
450 agents in order to determine the average performance of
the model. An average fitness is required because the mapping
from genotype to phenotype is stochastic.

The fitness function used during parameter optimisation
was (2 - Resource) + Age. Age is important for the fitness
function during parameter optimisation when agents are more
likely to die before the end of their evaluation. Each agent
was tested for a consistent number of cycles unless it died
prematurely.

3 Experiments

The artificial life animat concept was abstracted to provide
the simplest possible context for testing the model. An agent
was created that can neither sense an environment nor be
affected by one. It only interacts with a body that contains
a resource level (see figure 1). An example of a network of
dynamical systems can be seen in figure 2.

Body

Agent
controller

A,
Acti ons

Figure 1. The agent controller receives input signals derived
from the state of the body. It then attempts to choose one action
to be performed. The action directly alters the body state of the

agent. This leads to different input signals being passed to the

agent controller in the next turn.

Each change in resource level was passed to the agent con-
troller as an input signal. Before being input, they were scaled
to the largest increase and decrease that had occurred to each
resource so as to be within the range [0 : 1]. They were then
inverted so that desirable changes, such as increases to a re-
source level, resulted in a reduced signal to the agent con-
troller. This allows the network to act as a minimal distur-
bance system as it settles upon actions that reduce its total
input activation.

Each attractor in the output dynamical system corre-
sponded to a different action. At the end of a cycle, the action



Figure 2. The semi-transparent cubes with edges each
represent a single dynamical system. Each is a 3D space
containing attractors (coloured spheres) and a single state
coordinate (white sphere). Connections between attractors, or
attractors and systems, are represented with semi-transparent
arrows. The width of the connections and the size of each
attractor signifies its current strength. Only the active systems are
shown. The dark cubes label each system. The seventh dynamical
system has a recurrent connection to and from the same system.

of the attractor that is closest to the state coordinate was per-
formed. If there was a tie then then one of the winners was
chosen at random.

How does intelligence differ from other natural self-
organising phenomena? It is proposed here that as with all
self-organising systems, free energy is minimised so the sys-
tem can settle into a stable state. But in the case of intelligent
systems, unlike a stimulus / response agent, neutral, or even
costly actions can be performed if it means that the minimisa-
tion of free energy is greater when averaged over time. By this
means an intelligent system is more able to escape local min-
ima within an energy landscape. If correct, this would suggest
that if it is possible for an intelligent system to develop, then
it is likely to given sufficient time because such systems can
settle into states that are more stable.

The agent controller was given the task of learning tempo-
ral dependencies to test whether it could learn to perform
a sequence of neutral actions that subsequently enabled a
cost or reward. It was given a set of four reward and four
cost actions that increased or decreased the resource levels by
0.5/1.0/1.5/2.0 points respectively. The agent was also given
eight enabler actions that had no effect except to allow a cost
or reward action to have an effect if it was used in the next
cycle. If the corresponding enabler action had not been used
then the cost / reward action would have no effect.

There was a 0.1% chance for each cost / reward action at
the end of the cycle to change which enabler action it de-
pended upon to be allowed to be successfully performed. En-
abler actions were chosen at random so it was possible that
some enabler actions could allow more than one other cost /
reward action while some enabler actions allowed none.

4 Results

During the evolutionary run, agents were run for 2,000 cy-
cles before a fitness score was added to the running average
of its genotype. At the end of the evolutionary run, all the
genotypes in the population were evaluated the same num-
ber of times and the best one was selected. This was then
tested in a run lasting 1,000,000 cycles with the fittest geno-
type used to create a population of 450 agents. The results
are slightly different for each agent because there is a stochas-
tic mapping between genotype and phenotype. The genotype
was tested for an extended period because cost and reward
actions change which enabler action they rely upon randomly
over time. Running it for 1,000,000 cycles means that we can
rule out luck when evaluating. Fitness levels plotted for each
agent in the population show that all agents were able to
adapt successfully 3.

The results for the population of agents expressed from
the best genotype are in table 1. The first eight actions are
neutral and enable one, some or none of the next eight cost
or reward actions. The third column is the frequency with
which the action was performed, with all values adding up
to 100%. The fourth column specifies the success rate the
agents had when performing that action. If an action was
successfully performed because the enabler action that it was
reliant upon was performed in the previous cycle, then both
its success rate and that of the enabler action it is reliant
upon were incremented.

The most salient result is that the best reward action was
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Figure 3. Figure sorted in order of ascending fitness. The run
lasted 1,000,000 cycles. The results are slightly different for each
agent because there is a stochastic mapping between genotype
and phenotype.

attempted more frequently than the other actions (25%) and
more often successfully (84% of the time). The enabler actions
were attempted more often than the cost and reward actions,
and the reward actions marginally more often than the cost
actions. But the agents learnt to perform the reward actions
successfully more often than the cost actions.

Action Amt | Freq Success
Enabler 0] 6.67% 48.89%
Enabler 0| 6.17% 44.28%
Enabler 0 | 6.24% 44.86%
Enabler 0 | 6.08% 43.80%
Enabler 0| 6.73% 49.18%
Enabler 0| 5.57% 38.69%
Enabler 0 | 6.40% 46.82%
Enabler 0| 6.21% 44.84%
Cost -2.0 | 3.45% 4.17%
Cost -1.5 | 3.45% 418%
Cost -1.0 | 3.44% 4.19%
Cost -0.5 | 3.44% 4.16%
Reward 0.5 | 3.62% 6.82%
Reward 1.0 | 3.61% 6.84%
Reward 1.5 | 3.62% 7.00%
Reward 2.0 | 25.30% | 84.49%

Table 1. Average frequency of enabler, cost and reward actions
chosen by a population of 450 agents and how successfully they
were used.

The experiment was repeated using the same genotype, but
this time a base cost of -0.5 was applied when using an action.
If the cost or reward actions were used successfully then the
base cost was not applied. The two smallest cost and reward
actions (-/+ 0.5 respectively) were replaced with two non-
sequence neutral actions which never applied a base cost. An
agent could settle into a stable state by using only these two
actions, but if it were to reduce the input signal even more,
it would first have to perform another action that increased
it. The results are shown in table 2.

The agents did not perform the neutral non-sequence action
any more frequently than any of the other actions. The great-
est reward action was performed most frequently and success-
fully even though this meant that the agents first needed to

Action Amt | Freq Success
Enabler -0.5 | 6.27% | 10.52%
Enabler -0.5 | 6.31% | 11.60%
Enabler -0.5 | 6.25% | 10.80%
Enabler -0.5 | 6.17% 9.56%
Enabler -0.5 | 6.18% 9.91%
Enabler -0.5 | 6.20% | 10.05%
Enabler -0.5 | 6.40% | 12.73%
Enabler -0.5 | 6.23% 9.89%
Cost -2.0 | 5.80% 6.60%
Cost -1.5 | 5.79% 6.62%
Cost -1.0 | 5.80% 6.59%
Non-sequence 0| 5.77% 100%
Non-sequence 0 | 5.76% 100%
Reward 1.0 | 5.80% 6.26%
Reward 1.5 | 5.77% 6.28%
Reward 2.0 | 9.53% | 36.18%
Table 2. Average frequency of enabler, cost and reward actions

with a base cost when unsuccessfully used. Also includes two
non-sequence neutral actions.

perform a sequence action that carried a base cost.

5 Discussion

There is a paradox with life. If life is by nature thermodynam-
ically far from equilibrium [4] [1] then how did it self-organise
by minimising free energy? Life reduces the thermodynamic
gradient between the hot sun and cold space [23, pp 8]. The
existence of a thermodynamic gradient means that there is a
pressure to perform work. The more fully the thermodynamic
gradient can be exploited the more entropy is produced and
the more the gradient is reduced over time.

Shrodinger used the concept of entropy and Gibbs free en-
ergy to describe how life increases entropy by the act of feed-
ing. Food is relatively ordered and after being used to pro-
duce energy for the organism is returned in a simpler state to
the environment [24]. Feeding and breeding allows for more
entropy to be increased over time than a single agent that
starved to death and decayed.

Maybe intelligence avoids the dark room problem [9] in the
same way? Organisms seek to maximise their consumption
of resources and chance of breeding rather than hide in a
dark chamber avoiding surprises, but in so doing they in-
crease entropy over the life-time of the agent. In both cases
a thermodynamic pressure is succeeding in performing work,
thereby increasing entropy, until the components on which it
acts upon settle into a state stable enough to persist.

Although entropy is not represented in the dynamical sys-
tems described here, they do function by settling into stable,
or metastable states. The stronger the reward, the weaker
the directly injected input signal. In this way disturbance is
minimised, which can be seen as equivalent to minimising free
energy. The agent controller learnt to perform the correct neu-
tral enabler action that would allow it to successfully perform
a rewarding action, but it could also learn to perform a costly
enabler action first so as to gain a greater reward later. In
doing so the agents successfully avoided a local minima in
the energy landscape and minimised more disturbance when
averaged over time.

Information theory and thermodynamics share the concept
of entropy, and an information theoretic approach to Al has



proven extremely useful. This approach though ignores the
fact that brains are examples of self-organised physical sys-
tems that change their structure over time. Understanding
how and why they do so will help us to understand how they
function, and consequently, how artificial versions can be en-
gineered.

For example when discussing the dark-room problem Fris-
ton et al. refer to free energy in terms of information theory.
It could be argued though that surprise generates neural ac-
tivity and the difference between expectation and actual sen-
sory input could be understood as disturbance that needs to
be minimised. The difference between an information focused
and activity- or disturbance focused approach may be con-
sidered conceptual rather than actual, but as designers the
concepts that we use determine how we reason about and
engineer such systems.

Biologically inspired self-organising neural networks devel-
oped previously were explained as settling into a stable state
by finding the lowest point on an energy landscape [22] [21]
[20]. Modelling this understanding explicitly as a network of
connected dynamical systems demonstrates that it is a useful
concept when engineering self-organising systems.

LeDoux [18] ppl6 describes a distinguishing characteristic
of cognitive processing as flexibility of response to the envi-
ronment. Emotions provide a counter-balance to this by nar-
rowing the response of an agent in ways that have a greater
evolutionary fitness. Based on this, [20] proposed that emo-
tions can be defined in terms of whether they drive an agent
out of a stable state or help enforce it.

An approach similarly inspired by non-equilibrium thermo-
dynamics focused on the idea of activity as disturbance that
can be minimised by a system settling into stable states may
also be fruitful for modelling cognition.
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